SUPPLEMENTAL MATERIAL

Author Affiliations

- 1. These authors contributed equally to this work
- 2. Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
- 3. Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- 4. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 5. Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 6. Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- 7. Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center Università degli Studi di Milano, Milan 20122 Italy
- 8. Molecular Genetics Section, Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
- 9. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA 10. Data Tecnica International, Glen Echo, MD, USA
- 11. Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- 12. Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- 13. Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London SE5 9RS, UK
- 14. Institute of Genomic Medicine, Catholic University, Roma, Italy
- 15. Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK
- 16. Genetics and Pharmacogenomics, MRL, Merck & Co., Inc., Boston, MA 02115, USA
- 17. ALS Center, Salvatore Maugeri Foundation, IRCCS, Mistretta, Messina, Italy
- 18. 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- 19. "Maggiore della Carità" University Hospital, Novara, Italy
- 20. Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- 21. Department of Neuroscience, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- 22. Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation, Maternal and Child Health, Ospedale Policlinico San Martino, Genoa, Italy
- 23. Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- 24. ALS Clinical Research Center, University of Palermo, Palermo, Italy
- 25. Institute of Neurological Sciences, National Research Council, Mangone, Cosenza, Italy
- 26. Department of Neurology, Azienda Universitario Ospedaliera di Cagliari and University of Cagliari, Cagliari, Italy
- 27. Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center for Neuromuscular Diseases, Aurora Foundation, Messina, Italy

- 28. Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
- 29. Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- 30. "Il Bene" Center for Immunological and Rare Neurological Diseases at Bellaria Hospital, IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
- 31. Neurological Clinic, Marche Polytechnic University, Ancona, Italy
- 32. Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- 33. Department of Neurology, University of Chieti, Chieti, Italy
- 34. Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- 35. Department of Neurology, Columbia University, New York, NY 10032 USA
- 36. Institute for Genomic Medicine, Columbia University, New York, NY 10032 USA
- 37. Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- 38. Bioverativ, 225 2nd Ave, Waltham, MA 02145
- 39. HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
- 40. Center for Genomics of Neurodegenerative Diseases (CGND), New York Genome Center, New York, NY
- 41. Computational Biology, New York Genome Center, New York, NY
- 42. Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- 43. Departments of Neurology and Physiology, University of California, San Francisco, CA, USA
- 44. Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
- 45. Broad Institute, 415 Main St, Cambridge, Massachusetts, 02142, USA
- 46. Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- 47. Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- 48. Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
- 49. Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
- 50. The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- 51. Harvard Medical School, Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
- 52. Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, Massachusetts, USA
- 53. Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- 54. Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- 55. Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
- 56. Department of Neurology, University of Miami, Miami, FL 33136, USA
- 57. Howard Hughes Medical Institute, Chevy Chase, MD 20815
- 58. Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
- 59. Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
- 60. 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy and Department of Biomedical and Clinical Sciences "Luigi Sacco", University of

Milan, Italy

- 61. Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- 62. Department of Neurosciences, University of Padova, Padova, Italy
- 63. Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- 64. ALS Center, CHU Bretonneau, Tours University, Tours, France
- 65. Department of Neurology, Helsinki University Hospital and Molecular Neurology Programme, Biomedicum, University of Helsinki, Helsinki, FIN-02900, Finland
- 66. Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 67. Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Salford M6 8HD
- 68. Faculty of Human and Medical Sciences, University of Manchester, Manchester M13 9PT, UK
- 69. Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PG, UK
- 70. Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, University College London, Queen Square House, London WC1N 3BG, UK
- 71. Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, North-East London and Essex Regional Motor Neuron Disease Care Centre, London, El 2AT, UK
- 72. Genomics Technology Group, Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
- 73. Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- 74. Division of Brain Sciences, Department of Medicine, Imperial College London, W120NN, UK
- 75. Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 76. Department of Neurogenetics and Neurology, Academic Medical Centre, Amsterdam, The Netherlands
- 77. ALS-Neuromuscular Unit, Hospital General Universitario Gregorio Marañón, IISGM, Madrid, Spain
- 78. Computational Biology Group, Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
- 79. Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- 80. Center for Geriatric Medicine, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of Sacred Heart, Rome 00168, Italy
- 81. Division of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
- 82. Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- 83. Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- 84. Mount Sinai Beth Israel Hospital, Mount Sinai School of Medicine, New York City, NY
- 85. Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- 86. Department of Neurology, Neuromuscular Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
- 87. Discipline of Pathology, Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown, NSW 2050 Australia
- 88. Department of Biochemistry, Penn State College of Medicine, Hershey, PA, USA
- 89. Department of Pathology, Penn State College of Medicine, Hershey, PA, USA
- 90. Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
- 91. Research and Development Service, Veterans Affairs Boston Healthcare System, Boston, MA
- 92. Department of Neurology, Program in Behavioral Neuroscience, Boston University School of Medicine, Boston, MA

- 93. Neurology Service, VA Boston Healthcare System and Boston University Alzheimer's Disease Center, Boston MA 02130
- 94. Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- 95. Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM), Assistance Publique-Hôpitaux de Paris (AP-HP) Hôpital Pitié-Salpêtrière, Paris, France
- 96. INM, Univ Montpellier, Montpellier, France and Dept. of Biochemistry, CHU Nîmes, Nîmes, France
- 97. Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
- 98. Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- 99. Epidemiology Branch, National Institute of Environmental Health Sciences, NC 27709, USA
- 100. KU Leuven University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- 101. VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- 102. Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- 103. Institute of Human Genetics, Technische Universität München, Munich, Germany
- 104. Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- 105. Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- 106. Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- 107. Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal
- 108. SURFsara, Amsterdam, the Netherlands
- 109. Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
- 110. Neuromuscular Diseases Center/ALS Clinic, Kantonsspital St. Gallen, St. Gallen Switzerland
- 111. Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida 32224, USA
- 112. Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- 113. Faculty of Medicine, University of Southampton, Southampton, UK
- 114. Suna and Inan Kırac Foundation, Neurodegeneration Research Laboratory, Bogazici University, Istanbul, Turkey
- 115. ALS Unit/Neurology, Hospital San Rafael, Madrid, Spain
- 116. Department of Neurology Tel-Aviv Sourasky Medical Centre, Israel
- 117. Nuffield Department of Clinical Neurosciences, University of Oxford, UK
- 118. Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
- 119. Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- 120. ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, NSW 2139, Australia
- 121. Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- 122. Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain 123. Tanz Centre for Research of Neurodegenerative Diseases, Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, M5S 3H2, Canada

- 124. Division of Neurology, Department of Internal Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
- 125. Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA
- 126. Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- 127. Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
- 128. University Hospitals Leuven, Department of Neurology, Leuven, Belgium
- 129. Centro Clinico NeMO. Institute of Neurology. Catholic University, Largo F. Vito 1. 00168 Rome. Italy
- 130. NEuroMuscular Omnicenter (NEMO), Serena Onlus Foundation, Milan, Italy
- 131. Neurology Department, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- 132. Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå SE-90185
- 133. ALS center, CHU Gui de Chauliac, University of Montpellier, Montpellier, France
- 134. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- 135. Genetics and Pharmacogenomics, MRL, Merck & Co., Inc., West Point, PA 19486, USA
- 136. Neuroscience Institute of Torino, Turin 10124, Italy
- 137. Lead Contact

^{*} Correspondence: john.landers@umassmed.edu; bryan.traynor@nih.gov

Figure S1. Related to Figure 1; Workflow showing the quality control procedures applied to the present study. *increased to 10,031,630 when merged with the Van Rheenen et al dataset; Belg., Belgium; SNP, single nucleotide polymorphism; MAF, minor allele frequency, HWE, Hardy-Weinberg equilibrium; R², R-square value representing imputation precision; LNG, Laboratory of Neurogenetics.

Figure S2. Related to Figure 1; Multi-dimensional scaling plot of the 44,558 genotyped samples included in analysis compared to the HapMap populations.

Figure S3. Related to Figure 1; Quartile-Quartile plot of *P*-values from the meta-analysis based on logistic regression analysis. The black curve represents all SNPs, and the red curve represent SNPs after excluding variants within +/- 500 kilobases of the *C9orf72* and the *UNC13A* loci. Raw genome inflation factor (λ) was 1.042 and adjusted λ scaled to 1,000 cases and 1,000 controls was 1.001 based on the entire SNP dataset.

Figure S4. Related to Figure 3; Principal components analysis of samples included in the RVB analysis compared to the Human Diversity Panel. Ancestry filtering of the FALS discovery cohort was performed as follows: LASER was used to generate PCA coordinates for samples from the Human genome diversity panel (HGDP). Samples from the FALS discovery cohort were then mapped to this reference co-ordinate space. The discovery cohort was restricted to cases and controls occurring within 3 standard deviations of the mean for European HGDP samples along principal components 1-4.

Figure S5. Related to Figure 3; Quartile-Quartile plot of P values from the gene-based rare variant burden analysis of exome data. The genomic inflation factor ($\lambda = 0.93$) was calculated based on the entire gene dataset.

Figure S6. Related to Figure 3; Control-control analyses. *P* values from RVB analysis of FALS cases versus controls (y-axis) are plotted against minimum *P* values from RVB analyses of candidate batch effects (x-axis). To assess the potential impact of batch effects, the sample cohort was divided into 28 pseudo case-control groups based on the sequencing center or associated dbGaP project. Loci showing possible association with non-ALS related batch effects are coloured light grey. No evidence of confounder bias was observed for *KIF5A* or previously reported ALS genes.

Figure S7. Related to Fgure 3; Plot of variant call rates across the KIF5A protein-coding region in FALS versus controls analyzed by RVB testing.

Figure S8. Related to Figure 2; Principal components analysis of samples included in KIF5A replication cohort.

Table S1. Related to Figure 1; Demographics and baseline characteristics of patients diagnosed with ALS and control individuals included in the GWAS analysis.

	US		Italian		UK		French & Belgian		Total cohort	
	cases	controls	cases	controls	cases	controls	cases	controls	cases	controls
Sample number	3,777	33,365	2,853	2,143	449	226	1,150	595	8,229	36,329
Female (%)	1,515 (40.1)	23,870 (71.5)	1,239 (43.4)	896 (41.8)	193 (43.0)	109 (48.2)	486 (42.3)	422 (70.9)	3,433 (41.7)	25,297 (69.6)
Age (SD)	58.1 (12.3)	64.2 (13.3)	61.8 (11.8)	50.6 (17.4)	60.3 (12.8)	57.0 (0.0)	60.5 (12.6)	66.9 (16.8)	59.8 (12.3)	63.4 (13.9)
Bulbar-onset* (%)	963 (25.5)	-	741 (26.0)	-	141 (31.4)	-	357 (31)	-	2,202 (26.8)	-
Family history [†] (%)	458 (12.1)	-	248 (8.7)	-	54 (12.0)	-	195 (17.0)	-	955 (11.6)	-

SD, standard deviation. *Data not available for site of symptom onset for 199 patients. †Data not available for familial history of 154 patients.

 $\label{thm:contributing} \textbf{Table S2. Related to Figure 1; DbGaP studies contributing to the GWAS analysis.} \\$

Accession Number	Study	Sample number	Females (%)	Average age (SD)	Genotyping platform	Ascertainment criteria
phs000001	NEI Age-Related Eye Disease Study (AREDS)	1,644	959 (58.3)	68.2 (4.8)	HumanOmni2.5	Population controls
phs000007	Framingham Cohort	1,298	718 (55.3)	75.7 (8.6)	HumanOmni5	Population controls
phs000187	High Density SNP Association Analysis of Melanoma	1,027	414 (40.3)	51.3 (12.6)	HumanOmniExpress	Population controls
phs000196	CIDR: The NeuroGenetics Research Consortium Parkinson's Disease Study	10	6 (60)	74.3 (18.6)	HumanOmni1	Population controls
phs000292	GENEVA Genetics of Early Onset Stroke (GEOS) Study	89	0 (0)	41.5 (6.4)	HumanOmni1	Population controls
phs000304	Genes and Blood Clotting Study (GABC)	403	259 (64.3)	21.6 (3.3)	HumanOmni1	Population controls
phs000315	Woman's Health Initiative (WHI GARNET)	4,206	4206 (100)	65.7 (6.9)	HumanOmni1	Population controls
phs000368	Polycystic Ovary Syndrome Genetics (POLYGEN)	2,974	2973 (100)	46.8 (15.2)	HumanOmniExpress	Population controls
phs000372	Alzheimer's Disease Genetics Consortium Genome Wide Association Study	533	335 (62.9)	75.8 (9)	HumanOmniExpress	Population controls
phs000394	Autopsy-Confirmed Parkinson Disease GWAS Consortium (APDGC)	299	152 (50.8)	82.1 (12.6)	HumanOmni1	Population controls
phs000397	NIA Long Life Family Study (LLFS)	1,804	957 (53)	65.9 (12.3)	HumanOmni2.5	Population controls
phs000404	The Genetic Architecture of Smoking and Smoking Cessation	81	50 (61.7)	36.6 (5.9)	HumanOmni2.5	Population controls
phs000421	A Genome-Wide Association Study of Fuchs' Endothelial Corneal Dystrophy	497	294 (59.2)	70.4 (10.2)	HumanOmni2.5	Population controls
phs000428	Health and Retirement Study (HRS)	9,394	5437 (57.9)	68.4 (9.4)	HumanOmni2.5	Population controls
phs000615	NINDS Stroke Genetics Network (SiGN)	743	416 (56)	56 (16.1)	HumanOmni5	Population controls
phs000675	GWAS on Selected WHI Hormone Trial European Americans	5,626	5626 (100)	68 (5.9)	HumanOmni1	Population controls
phs000801	NCI Non-Hodgkin Lymphoma GWAS	1,544	790 (51.2)	58.4 (11.6)	HumanOmniExpress	Population controls
phs000869	Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study (BEAGESS)	1,174	271 (23.1)	61.3 (10.9)	HumanOmni1	Population controls

Table S3. Related to Figure 1; SNPs achieving genome-wide significance in the GWAS analysis.

	SNP Information				Present Study (8,229 Cases / 36,329 Controls)			Van Rheenen <i>et al.</i> (12,577 Cases / 23,475 Controls)			Combined Discovery Set (20,806 Cases / 59,804 Controls)			
SNP	Chr	Position	Gene	Beta [SE]	OR [95% CI]	P	Beta [SE]	OR [95% CI]	P	\mathbf{I}^2	Beta [SE]	OR [95% CI]	P	
Novel Loci														
rs117027576	12	57,316,603	KIF5A	0.373 [0.096]	1.45 [1.20-1.76]	1.1x10 ⁻⁴	0.286 [0.070]	1.33 [1.16-1.53]	4.3x10 ⁻⁵	25.6	0.316 [0.057]	1.37 [1.23-1.54]	2.3x10 ⁻⁸	
rs118082508	12	57,318,819	KIF5A	0.374 [0.096]	1.45 [1.20-1.76]	$1.0x10^{-4}$	0.288 [0.070]	1.33 [1.16-1.53]	3.8x10 ⁻⁵	25.8	0.317 [0.051]	1.37 [1.23-1.54]	2.0x10 ⁻⁸	
rs113247976*	12	57,975,700	KIF5A	0.381 [0.086]	1.46 [1.23-1.74]	9.2x10 ⁻⁶	0.288 [0.066]	1.33 [1.17-1.52]	1.1x10 ⁻⁵	0.0	0.322 [0.052]	1.38 [1.24-1.53]	6.4x10 ⁻¹⁰	
rs116900480	12	58,656,105	KIF5A	0.354 [0.083]	1.42 [1.21-1.68]	1.9x10 ⁻⁵	0.294 [0.065]	1.34 [1.18-1.53]	7.1x10 ⁻⁶	0.0	0.317 [0.051]	1.37 [1.24-1.52]	6.6x10 ⁻¹⁰	
rs142321490	12	58,676,132	KIF5A	0.357 [0.082]	1.43 [1.21-1.68]	1.5x10 ⁻⁵	0.292 [0.066]	1.34 [1.18-1.53]	8.0×10^{-6}	0.0	0.317 [0.056]	1.37 [1.24-1.52]	6.1x10 ⁻¹⁰	
Previously Pul	blished	Loci												
rs10463311	5	150,410,835	TNIP1	-0.065 [0.024]	0.94 [0.89-0.98]	7.8x10 ⁻³	-0.100 [0.020]	0.91 [0.87-0.94]	8.5x10 ⁻⁷	0.0	-0.085 [0.016]	0.92 [0.89-0.95]	4.0×10^{-8}	
rs3849943	9	27,543,382	C9orf72	-0.17 [0.024]	0.84 [0.80-0.88]	$1.4x10^{-12}$	-0.181 [0.020]	0.83 [0.80-0.87]	4.0×10^{-19}	0.0	-0.176 [0.016]	0.84 [0.81-0.86]	3.8x10 ⁻³⁰	
rs74654358	12	64,881,967	TBK1	0.182 [0.058]	1.20 [1.07-1.34]	1.6×10^{-3}	0.206 [0.042]	1.23 [1.13-1.34]	7.7x10 ⁻⁷	0.0	0.198 [0.034]	1.22 [1.14-1.30]	4.7x10 ⁻⁹	
rs12973192	19	17,753,239	UNC13A	-0.149 [0.026]	0.86 [0.82-0.91]	1.3x10 ⁻⁸	-0.106 [0.019]	0.9 [0.87-0.93]	2.4x10 ⁻⁸	38.6	-0.121 [0.015]	0.89 [0.86-0.91]	3.9x10 ⁻¹⁵	
rs75087725	21	45,753,117	C21orf2	0.687 [0.162]	1.99 [1.44-2.75]	2.2x10 ⁻⁵	0.479 [0.074]	1.61 [1.39-1.87]	8.7x10 ⁻¹¹	31.1	0.515 [0.067]	1.67 [1.46-1.91]	1.8x10 ⁻¹⁴	

Position is based on Human Genome Assembly build 37. Nearest gene or previously published gene names are included. Chr, chromosome; SE, standard error; OR, odds ratio; 95% CI, 95% confidence interval; *, rs113247976 represents the p.Pro986Leu variant in *KIF5A* (NM_004984.2).

Table S4. Related to Figure 1; Suggestive SNPs with P values less than 5.0x10-7 in the GWAS analyses.

SNP Information					Present Study (8,229 Cases / 36,329 Controls)			(1:	Van Rheenen <i>et al.</i> (12,577 Cases / 23,475 Controls)				Combined Discovery Set (20,806 Cases / 59,804 Controls)		
SNP	Chr	Position	Gene	Case MAF	Control MAF	OR [95% CI]	P	Case MAF	Control MAF	OR [95% CI]	P	Case MAF	Control MAF	OR [95% CI]	P
rs17070492	8	2,420,855	LOC101927815	10.01%	9.76%	1.10 [1.02-1.18]	1.3x10 ⁻²	9.17%	10.09%	1.16 [1.09-1.23]	1.3x10 ⁻⁶	9.50%	9.89%	1.13 [1.08-1.19]	1.0 x10 ⁻⁷
rs10139154	14	31,147,498	SCFD1	34.10%	31.30%	1.07 [1.03-1.12]	2.1x10 ⁻³	33.76%	31.17%	1.08 [1.04-1.12]	1.9x10 ⁻⁵	33.90%	31.25%	1.08 [1.05-1.11]	1.4 x10 ⁻⁷
rs10143310	14	92,540,381	ATXN3	24.85%	24.36%	1.09 [1.04-1.015]	3.3x10 ⁻⁴	24.04%	22.95%	1.08 [1.04-1.13]	2.6x10 ⁻⁴	24.36%	23.81%	1.09 [1.05-1.12]	3.2 x10 ⁻⁷
rs9901522	17	14,673,934	PMP22	7.08%	6.31%	1.16 [1.06-1.26]	5.2x10 ⁻⁴	6.87%	5.97%	1.16 [1.08-1.24]	4.6x10 ⁻⁵	6.95%	6.18%	1.16 [1.10-1.22]	8.6 x10 ⁻⁸

Table S5. Related to Figure 3; DbGaP/EGA studies contributing to the RVB analysis.

Accession Number	Study	Sample number	Females (%)
phs000179	Genetic Epidemiology of COPD (COPDGene)	2	100%
phs000179	NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Cystic Fibrosis)	238	49.6%
phs000254	NHLBI GO-ESP: Women's Health Initiative Exome Sequencing Project (WHI) - WHISP	1904	100%
phs000281 phs000290	NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Pulmonary Arterial Hypertension)	73	82.2%
phs000290 phs000291	NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Lung Health Study of COPD)	332	37%
phs000291 phs000296	NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (COPDGene)	285	52.6%
phs000290 phs000307	NHLBI Framingham Heart Study Allelic Spectrum Project	1317	51.6%
phs000347	NHLBI GO-ESP: Family Studies (Aortic Disease)	29	34.5%
phs000347	NHLBI GO-ESF. Family Studies (Aoruc Disease) NHLBI GO-ESP Family Studies: Pulmonary Arterial Hypertension	9	88.9%
phs000334 phs000362	NHLBI GO-ESF Family Studies: (Familial Atrial Fibrillation)	12	16.7%
phs000302 phs000398	NHLBI GO-ESF: Failing Studies. (Failinal Attial Florination) NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (ARIC)	800	54.6%
•		186	28%
phs000400	NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (CHS)		
phs000401	NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (FHS)	348	36.8%
phs000402	NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (JHS)	296	58.8%
phs000403	NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (MESA)	259	45.2%
phs000422	NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Asthma)	189	65.1%
phs000498	Jackson Heart Study Allelic Spectrum Project	1629	63.8%
phs000518	NHLBI GO-ESP Family Studies: Idiopathic Bronchiectasis	24	70.8%
phs000572	Alzheimer's Disease Sequencing Project (ADSP)	4655	58.8%
phs000632	NHLBI GO-ESP: Family Studies (Hematological Cancers)	19	36.8%
phs000651	Building on GWAS: the U.S. CHARGE consortium - Sequencing (CHARGE-S): FHS	550	61.5%
phs000667	Building on GWAS for NHLBI-Diseases: The U.S. CHARGE Consortium - Sequencing (CHARGE-S): CHS	1209	52.9%
phs000668	Building on GWAS: the U.S. CHARGE consortium - Sequencing (CHARGE-S): ARIC	5497	58.5%
phs000744	Yale Center for Mendelian Genomics (Y CMG)	1944	44.7%
phs000806	MIGen_ExS: Ottawa Heart Study	1966	33.1%
phs000814	MIGen_ExS: Italian Atherosclerosis Thrombosis and Vascular Biology	3591	11.3%
phs000908	Identification of Rare Variants in PD through Whole Exome Sequencing	105	66.7%
phs000917	MIGen_ExS: PROMIS	7298	17.9%
phs001000	MIGen_ExS: U. of Leicester	1081	0%
phs001101	MIGen_ExS: MDC	1075	44.7%
EGAO00000000079	UK10K	4062	65%
phs000101	NIH Exome Sequencing of Familial Amyotrophic Lateral Sclerosis Project	201	45%

Table S6. Related to Figure 2, 3; Quality control filtering of the FALS discovery and *KIF5A* replication cohorts.

FALS discovery cohort

Cohort	Cases	Controls
Initial Sample Set	1,463	41,410
Post HGDP Continental Ancestry Filter	1,397	24,563
Post Call Rate Filter	1,331	20,789
Post Heterozygosity Filter	1,319	20,664
Post Relatedness Filter	1,138	19,494

rs113247976 replication cohort (FALS discovery + ALS WXS/WGS replication cohort)

Cohort	Cases	Controls
Initial Sample Set	12,180*	21,533**
Post Call Rate Filter	11,916	21,050
Post Heterozygosity Filter	11,721	21,028
Post Ancestry Filter (PCA)	11,373	21,009
Post Relatedness & GWAS Checksum Filter	4,160	18,650

^{*} All 1,138 FALS passing QC in FALS discovery cohort + 11,042 additional ALS WXS/WGS cases

LOF screen (ALS WXS/WGS replication cohort)

Cohort	Cases	Controls
Initial Sample Set	11,042*	2,039**
Post Call Rate Filter	10,741	2,039
Post Heterozygosity Filter	10,549	2,026
Post Ancestry Filter (PCA)	10,201	2,008
Post Relatedness	9,046	1,955

^{* 11,042} additional ALS WXS/WGS cases not included in FALS discovery cohort

See Experimental Procedures for further details on filtering parameters.

^{**} All 19,494 controls passing QC in FALS discovery cohort + 2,039 additional WXS/WGS controls

^{** 2,039} additional WXS/WGS controls not included in FALS discovery cohort

 $\begin{tabular}{ll} Table S7. Related to Figure 3; RVB analysis according to mutation type across KIF5A and within gene sub-domains. \end{tabular}$

Analysis	FALS	Control	OR (95% CI)	P
Missense - Full CDS	9 (0.79%)	80 (0.41%)	1.93 (0.915-3.60)	8.09x10 ⁻²
Missense - Motor Domain	3 (0.26%)	18 (0.09%)	3.27 (0.86-9.25)	7.74×10^{-2}
Missense - Microtubule Binding Domain	2 (0.18%)	8 (0.04%)	5.07 (0.95-18.52)	5.57×10^{-2}
Missense - Coiled-Coil Domain	3 (0.26%)	55 (0.28%)	1.01 (0.28-2.60)	9.83×10^{-1}
Missense - C-Terminal Domain	3 (0.26%)	7 (0.04%)	7.23 (1.74-24.55)	$9.41x10^{-3}$
Loss of Function	6 (0.53%)	3 (0.02%)	32.07 (9.05-135.27)	5.55×10^{-7}
Loss of Function (including frameshifts)	8 (0.70%)	3 (0.02%)	41.16 (12.61-167.57)	3.77x10 ⁻⁹

FALS, familial ALS; OR, odds ratio; 95% CI, 95% confidence interval; CDS, coding sequence

Table S8. Related to Figure 3; Clinical information of probands and relatives carrying KIF5A LOF variants.

Position	Variant	Relation to Proband	DNA Available	Exon	cDNA	Description	Gender	Age of Onset (years)	Site of Onset	Survival (months)	Alive
57,975,729	GA>A	Proband	Y	26	c.2987delA	p.Asp996fs	M	45	n/a	n/a	n/a
57,976,382	C>T	Proband	Y	27	c.2993-3C>T	5' Splice Junction	M	29	L	>264	Y
57,976,382	C>T	Sister	Y	27	c.2993-3C>T	5' Splice Junction	F	52	L	84	N
57,976,382	C>T	Brother	Y	27	c.2993-3C>T	5' Splice Junction	M	18	L	324	N
		Brother	N				M	n/a	L	n/a	N
57,975,731	CA>C	Sporadic	Y	26	c.2989delA	p.Asn997fs	F	50	L	>96	Y
57,976,384	G>A	Sporadic	N	27	c.2993-1G>A	5' Splice Junction	n/a	52	В	n/a	n/a
57,976,385	GA>G	Proband	Y	27	c.2996delA	p.Asn999fs	M	42	L	>12	Y
		Brother	N				M	38	n/a	24	N
57,976,411	A>G	Proband	Y	27	c.3019A>G	p.Arg1007Gly	F	53	L	45	N
57,976,412	G>A	Proband	Y	27	c.3020G>A	p.Arg1007Lys	M	50	L	>108	Y
57,976,412	G>A	Proband	Y	27	c.3020G>A	p.Arg1007Lys	F	50	n/a	>240	Y
57,976,413	G>A	Proband	Y	27	c.3020+1G>A	3' Splice Junction	M	45	В	>220	Y
		Parent	N				n/a	47	n/a	156	N
		Uncle/Aunt	N				n/a	57	n/a	144	N
		Uncle/Aunt	N				n/a	55	n/a	121	N
		Uncle/Aunt	N				n/a	46	n/a	24	N
57,976,414	T>A	Proband	Y	27	c.3020+2T>A	3' Splice Junction	M	46	В	124	N
57,976,414	T>A	Brother	Y	27	c.3020+2T>A	3' Splice Junction	M	48	L	117	N
		Mother	N				F	35	L	144	N
57,976,415	A>G	Proband	Y	27	c.3020+3A>G	3' Splice Junction	M	50	В	54	N

All mutations were heterozygous; Genomic coordinates are based on Human Genome Assembly build 37; Protein change is based on transcript NM_004984.3; n/a, not applicable or not availabl